Ionic Liquids: a new "solution" for solution chemistry?

> **Jairton Dupont** Laboratory of Molecular Catalysis Institute of Chemistry – UFRGS

The University of Nottingham

Rio Grande do Sul - Brazil

Information

Confusion

Wisdom

Bewilderment Ambiguity

Knowledge

Molten Salts

Any liquid electrolyte composed entirely of ions is denominated a molten salt or a fused salt

Туре	Example	m.p. (°C)
Inorganic	NaCl	801
Organic	(ⁿ Bu) ₄ PCI	80
Eutectic	LiCI/KCI (6/4)	352
Organomineral	Et ₃ NHCI/CuCI	25

MAGIC TEAM: THORIUM-FUELED + MOLTEN SALT REACTORS

Walden, P. Bull. Acad. Imper. Sci. (St. Petersburg) 1914, 405. C.A. 1914, 8, 2291

Ionic Liquids

"Non-corrosive" molten salts that are fluid below 100°C and posses relatively low viscosity

BASIL - BASF

Scheme 3: 1-methylimidazole as an acid scavenger

Today the BASIL[™] process is run in a little jet stream reactor which has a capacity of 690000 kg m⁻³ h⁻¹.

Scheme 1: Chlorination of alcohols with HCl gas

DCBE Figure 1: Higher selectivities for the product 1,4-dichlorobutane (DCB) are achieved if the chlorination of the butanediol with HCl gas is performed in an ionic liquid rather than in the pure alcohol. Side products usually are ethers (tetrahydrofurane THF, dichlorobutylether DCBE) or the monochlorinated product 1-chlorobutane-4-ol (CBO).

Me N + N Me J. S BF_4 mp= 15 °C

J. S. Wilkes and M. J. Zaworotko, *J. Chem. Soc. Chem. Commun.* **1992**, 965.

mp= down to -80 °C

P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. deSouza, J. Dupont, *Polyhedron* **1996**, *15* 1217-1219. (Received 16 June 1995).

Y. Chauvin, L. Mussmann, H. Olivier, *Angew. Chem. Int. Ed. Engl.* **1995,** *34* 2698-2700. (Received 18 August 1995).

P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, *Inorg. Chem.* **1996**, *35* 1168-1178. (Received 15 August 1995).

Physical-chemical properties

R_I	X

	ð	Q	2
3	1		1
Į,	A		

R	X	Tg ^a	Tm ^b	Td ^c	η	d	σ
		(°C)	(°C)	(°C)	$(mPa s)^d$	$(g.cm^{-3})^e$	$(\mathrm{mScm}^{-1})^{\mathrm{f}}$
Et	BF ₄	-92	13	447	37	1.28	14
^{<i>n</i>} Pr	BF ₄	-88	-17	435	103	1.24	5.9
^{<i>n</i>} Bu	BF ₄	-85	none	435	180 (233)	1.21	3.5 (8.6)
^{<i>n</i>} Bu	PF_6	-61	10		219 (312)	1.37	1.6 (6.5)
^{<i>n</i>} Bu	AlCl ₄	-88	none	/	(294)	1.23	(24.1)
^{<i>n</i>} Bu	CF ₃ SO ₃		16		90	1.22	3.7
^{<i>n</i>} Bu	$N(Tf)_2$		-4	>400	69	1.43	3.9
^{<i>n</i>} Bu	CF ₃ CO ₂	-30	none		73	1.21	3.2
Ethyle	ne glycol	none	-13	196 ^g	21	1.11	

^a Transition glass temperature, ^b Melting point, ^c Decomposition temperature, ^d Viscosity at 25°C and in parenthesis at 30°C, ^e Density at 25°C, ^f Conductivity at 25°C and in parenthesis at 60 °C, ^g boiling point.

Dupont, J. J. Braz. Chem. Soc. 2004, 15, 341.

Ionic Liquids

No measurable vapour pressure

High chemical and thermal stability

Large electrochemical window (up to 7V)

Relatively low viscosity (2-3 poises)

Variable solubility with organic compounds

Chem. Rev. 2002, 102, 3667.

Vapor Pressure

Organic Solvent

New Applications

Electrical rubber as synthetic skin for robots made by grinding carbon nanotubes with an ionic liquid and adding it to rubber

Lubricants

22

Solubilization

Pine wood fibers in ionic liquid

Miscibility

N-octane

Water

Ionic Liquid

Structural Organization of Imidazolium Ionic Liquids

R-N

R-N(+

N_R

R

R-N(+

н

N_R

Chem. Phys. Phys. Chem **2006**, *8*, 2441 *Chem. Eur. J.* **2000**, *6*, 2377

C. Consorti, 2002

View of the crystal structure of **dicationic ionic liquid** through the crystallographic h,k,l (7.54, 0, 12.8) plane. Hydrogen atoms have been omitted for clarity; fluorine atoms and butyl groups shown in dark gray.

Gas Phase Structural Organization

Angew. Chem. Int. Ed. 2006, 45, 7251

Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids

Uwe Schröder,^a Jay D. Wadhawan,^a Richard G. Compton,^a Frank Marken,^{*†^a} Paulo A. Z. Suarez,^b Crestina S. Consorti,^b Roberto F. de Souza^b and Jaïrton Dupont^b

Conclusions

It has been shown that traces of water can have a dramatic effect on the electrochemical characteristics and the rate of diffusion observed voltammetrically in ionic liquid media. In particular, the contrast in the effect of water on the diffusion coefficient for neutral and for ionic species suggests that 'wet' ionic liquids may not be regarded as homogeneous solvents, but have to be considered as 'nano-structured' with polar and non-polar regions.

New J. Chem., 2000, 24, 1009-1015

Acc. Chem. Res. 2011, 44, 1223

ILs cannot be regarded as merely homogeneous solvents. In fact, ILs form extended hydrogen-bond networks with polar and non-polar nano domains and therefore are by definition "supramolecular" fluids.

Different Modes of Aqueous Solvation

Neat Ionic Liquid

Diluted Ionic Liquid

J. Braz. Chem. Soc. 2004, 15, 341

"Inclusion" Enzyme Complex

A. Two-dimensional simplified model of the supramolecular structure of imidazolium ILs based on hydrogen bond interactions. **B**. Schematic description of the "inclusion" of enzymes in wet regions into the IL network.

P. Lozano, 2005, Murcia

UFRGS

Imidazolium Ionic Liquids

Pure form: Polymeric supramolecules with weak interactions

 ${[(DAI)_{3}(X)]^{2+}[(DAI)(X)_{3}]^{2-}}_{n}$

Mixture: Nanostrutured materials [(DAI)_x(X)_z]^{x-z} [(DAI)_y(X)_x]^{x-z}

x>1 and z>0

J. Braz. Chem. Soc. **2004**, *15*, 341. *J. Phys. Chem.* B **2005**, *109*, 4341

Ionophilic Ligands/Complexes: Multiphase Catalysis

Org. Lett. 2008, 10, 237.

Adv. Synth. Catal. 2008, 350, 160

Preparation of the transition-metal nanoparticles

"Magic Numbers" of Transition-Metal Nanoparticles

Full-Shell "Magic Number" Clusters					
Number of shells	1	2	3	4	. 5
Number of atoms in cluster	M13	M55	M147	M309	M561
Percentage surface atoms	92%	76%	6 <mark>3%</mark>	52%	45%

Idealized representation of hexagonal close-packed full-shell 'magic number' clusters. Each metal atom has the maximum number of nearest neighbors, which imparts some degree of extra stability to full-shell clusters.

Surface Energy

Transition-metal nanoclusters are only kinetically stable

Stabilization

Steric

Coordination of anionic species (X, CO₂, polyoxoanions, ...)

> Polymers, dendrimers, alkylammonium cations, ...

R. G. Finke in *Transition-Metal Nanoclusters* (Eds. D. L. Feldheim, C. A. Foss Jr.) Marcel Dekker, New York, **2002**, Chapter 2, pp. 17-54

BMI.PF₆

H₂ (4 atm), 75°C 25 min

[Ir(0)]_n dispersed
in BMI.PF₆
(2.3 ± 0.3 nm)

J. Am. Chem. Soc. **2002**, *124*, 4228; Revue: *Chem. Eur. J.* **2007**, *13*, 32.

18 17:31

Examples of nanostructures prepared and characterized in imidazolium ionic liquids (*in situ TEM micrographs*): a) Co(0) nanocubes;b) spherical Ru(0) nanoparticles and c) worm-like Ir(0) nanoparticles.

Angew. Chem. Int. Ed. **2008**, 47, 9075. Inorg. Chem. **2008**, 47, 8995. P. Migowski 2009 MsC Dissertation

Pt

FRGS

Micrographs of the Ru@Pt NPs in BMI.PF₆; (a) HAADF-STEM (300 kV); (b) TEM (120 kV); size distribution histogram (c) before and (d) after catalysis. HAADF-STEM images of isolated Ru@Pt NPs are shown at insets

Selectivity of the partial hydrogenation products ((a) 1,3-CHD and (b) CHE) vs. benzene conversion. Reaction conditions: 0.77 µmol metal NPs, benzene/metal (mol ratio) = 730, 1 mL BMI.PF₆, 60 °C and 6 bar of H₂. Co-solvent: 4 mL *n*-heptane. Conversion and selectivity determined by GC and GC-MS

Metal Nanoparticles Deposition in ILs by Bombardment

(a) Mean diameter of Au NPs obtained in BMI.NTf2 after 150 s of deposition using different discharge currents; (b) diameter versus deposition time for Au NPs obtained in BMI.NTf2 at a fixed sputtering current of 40 mA (325 V). (Adapted with permission from ref 74. Copyright 2010 American Chemical Society.)

Acc. Chem. Res. 2011, 44, 1223-1231.

[Au(0)]_{foil} Ar⁺ 10⁻⁵ bar 40 mA 1.1 min. [Au(0)]_n "Golden Nanodisks" CN -N (+) N ⁻N(SO₂CF₃)₂

ChemSusChem, 2016, DOI: 10.1002/cssc.201600385

Figure 1. Potential application fields of ionic liquids including their commercialisation status.

Conselho Nacional de Deservolvimento Clentífico e Tecnológico

PETROBRAS

MERCK

CAPES

Iwas

institutos nacionais de ciência e tecnologia

Faperas

IL - Nano Dr. Giovanna Machado Dr. A. Lapis Marcos A Gelesky (PhD) Claudia C Cassol (PhD) Marcelo P. Stracke (PhD) Bauer Ferreira (PhD) Sandra X. Chiaro (PhD) Jackson D. Stocken (PhD) Pedro M. da Silva (MsC) Fabricio Flores (MsC)

P. Fichtner – UFRGS (TEM) S. R. Texeira – UFRGS (XRD) J. Morais – UFRGS (XPS) W. Loh (UNICAMP) M. Eberlin (UNICAMP) F. Rominger (Heidelberg) Palladacycles Dr. Gunter Ebeling Dr. Brenno A. Silveira Gilbert Rosa (MsC) Fabiana S. Mancilha (MsC) Aline S. Lopes (MsC) Vinicius Reis (UG)

Ex

Paulo A Z Suarez (UnB) Silvana Silva (CSI-Porto Alegre) Alexandre P Umpierre (Lyon) Crestina S Consorti (Erlangen) Glédison S. Fonseca (BASF, Germany) Carla W Sheeren (Strasbourg) Edson T Silveira (UERS) Liane M Rossi (USP-SP)

